This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

BIACETYLDIHYDRAZONE AND BRIDGE CYANIDE COMPLEXES

Montserrat Barquin²; Maria Gonzalez Garmendia ${ }^{a}$
${ }^{\text {a }}$ Unidad de Química Inorgánica, Facultad de Ciencias Químicas, Universidad del País Vas, San Sebastian, Spain

To cite this Article Barquin, Montserrat and Garmendia, Maria Gonzalez(1996) 'BIACETYLDIHYDRAZONE AND BRIDGE CYANIDE COMPLEXES', Journal of Coordination Chemistry, 39: 3, 211 - 218
To link to this Article: DOI: 10.1080/00958979608024329
URL: http://dx.doi.org/10.1080/00958979608024329

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


BIACETYLDIHYDRAZONE AND BRIDGE CYANIDE COMPLEXES

MONTSERRAT BARQUIN and MARIA J. GONZALEZ GARMENDIA*
Unidad de Química Inorgánica, Facultad de Ciencias Químicas, Universidad del País Vasco, UPV/EHU, Apartado 1072, 20080-San Sebastian, Spain

(Received 4 August 1995; in final form 12 February 1996)

Abstract

Dinuclear complexes of biacetyldihydrazone (BdH) and bridging cyanide groups, (BdH) $\mathrm{M}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{M}=\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ or $\mathrm{Zn}(\mathrm{II})$; $(\mathrm{BdH}) \mathrm{M}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{M}=\mathrm{Cu}(\mathrm{II})$ or $\mathrm{Zn}(\mathrm{II})$; $(\mathrm{BdH}) \mathrm{Cu}(\mathrm{NC})_{2} \mathrm{Zn}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $(\mathrm{BdH})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \mathrm{Zn}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ were prepared by reaction of $\left[\mathrm{M}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ or $\mathrm{K}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{2}\right]$. The complexes are insoluble and have been characterized by infrared and electronic spectroscopies. Magnetic subsceptibilities in the $4.2-290 \mathrm{~K}$ range show Curie - Weiss behaviour for the paramagnetic samples.

Keywords: cyanide; biacetyldihydrazone; dimers

INTRODUCTION

Biacetyldihydrazone $\left(\mathrm{H}_{2} \mathrm{NNC}=\mathrm{Me}-\mathrm{CMe}=\mathrm{NNH}_{2}\right)$ is a bidentate ligand with two imine N-atom donors coordinated to a metal atom. For the first transition element series, complexes have been reported ${ }^{1-3}$ and are of high or low spin according to the nature of metal.

In previous communications ${ }^{46}$ we described the synthesis and characterization of $\left[\mathrm{M}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{M}=\operatorname{cobalt}(\mathrm{II})$, nickel(II), copper(II) or zinc(II), $\mathrm{BdH}=$ biacetyldihydrazone; $\left[\mathrm{Fe}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{3} ;\left[\mathrm{M}(\mathrm{BdH})_{3}\right]\left[\mathrm{Ni}(\text { dto })_{2}\right]$, $\mathrm{M}=$ cobalt(II), nickel(II) or zinc(II), dto $=$ dithiooxalate; $(\mathrm{BdH})_{2} \mathrm{Cu}(\mathrm{dto}) \mathrm{Ni}$ (dto) and $\left[\mathrm{Fe}(\mathrm{BdH})_{3}\right]_{2}\left[\mathrm{Ni}(\mathrm{dto})_{2}\right]_{3}$. The latter were prepared by reactions of nitrates with $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{dto})_{2}\right]$. All complexes are ionic. The $\left[\mathrm{M}(\mathrm{BdH})_{3}\right]^{\mathrm{nt}}$ cation remains unchanged. Only the copper(II) complex is dinuclear with a bridge dto ${ }^{2-}$ and two BdH molecules.

[^0]In this paper we describe the interaction of nitrates with $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{2}\right]$ and $\mathrm{K}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]$. In this case the $\left[\mathrm{M}(\mathrm{BdH})_{3}\right]^{2+}$ cations are affected. A BdH molecule is released and dinuclear complexes, with two bridging cyanide groups, are formed in the case of $(\mathrm{BdH})_{2} \mathrm{M}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{M}=$ cobalt(II), nickel (II) or zinc(II) and $(\mathrm{BdH})_{2} \mathrm{Ni}(\mathrm{NC})_{2} \mathrm{Zn}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. For copper(II) complexes two BdH molecules are released and $(\mathrm{BdH}) \mathrm{Cu}(\mathrm{NC})_{2} \mathrm{M}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{M}=$ nickel(II) or zinc(II) is formed. $(\mathrm{BdH}) \mathrm{Zn}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ is obtained as well.

EXPERIMENTAL

Preparation of Complexes

Biacetyldihydrazone was prepared according to the Busch and Bailar method. ${ }^{7}$ $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ and $\mathrm{K}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]$ were obtained from the reaction of nickel chloride and zinc nitrate respectively, with potassium cyanide in water. ${ }^{8-9}\left[\mathrm{M}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$, $\mathrm{M}=$ cobalt(II), nickel(II), copper(II) and zinc(II) were obtained according to described methods. ${ }^{4,10}$

$(\mathrm{BdH})_{2} \mathrm{Co}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

To an aqueous solution of 6 mmol of $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ was added 3 mmol of $\left[\mathrm{Co}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in water. The precipitate formed was filtered and the solution was stirred 24 h . The new precipitate formed was filtered, washed with water and dried in vacuo over CaCl_{2}. Colour: rose. Yield: 56%. Dec.: $215^{\circ} \mathrm{C}$. Anal. calc. (\%): C, $30.80 ; \mathrm{H}, 4.74$; N, 35.91 . Found: C, 30.94; H, 4.51; N, 35.75.

$(\mathbf{B d H})_{2} \mathbf{M}(\mathbf{N C})_{2} \mathbf{N i}(\mathrm{CN})_{2} \cdot \mathbf{M}=$ nickel(II) or $\mathbf{z i n c}(\mathrm{II})$

An aqueous solution of 3 mmol of $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ was added to 3 mmol of $\left[\mathrm{M}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ in water. After 15 minutes stirring, the precipitate was filtered, washed with water and dried in vacuo over CaCl_{2}. For $\mathrm{M}=\mathrm{Ni}$,colour: rose. Yield: 73%. Dec.: $215^{\circ} \mathrm{C}$. Anal. calc. (\%): C, $32.04 ; \mathrm{H}, 4.48$; N, 37.37. Found: C, 31.42; H, 4.47; N, 36.60. For $\mathrm{M}=\mathrm{Zn}$, colour: yellow. Yield: 56%. Dec.: $222^{\circ} \mathrm{C}$. Anal. calc. (\%): $\mathrm{C}, 30.38 ; \mathrm{H}, 4.67$; N, 35.42. Found: C, 30.84; H, 4.89; N, 35.38.

$(\mathrm{BdH}) \mathrm{Zn}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Some $3 \mathrm{mmol}\left[\mathrm{Zn}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ in water were added to an aqueous solution of $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ in $1: 1$ proportion. The precipitate was filtered, washed
with water and dried in vacuo over CaCl_{2}. Colour: white. Yield: 68%. Dec.: $208^{\circ} \mathrm{C}$. Anal. calc. (\%): C, 26.67; H, 3.36; N, 31.10. Found: C, 26.66; H, 3.27; N, 30.99 .

$(\mathrm{BdH}) \mathrm{Cu}(\mathrm{NC})_{2} \mathrm{M}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{M}=\operatorname{nickel}(\mathrm{II})$ or $\operatorname{zinc}(\mathrm{II})$

An aqueous solution of $3 \mathrm{mmol} \mathrm{K}_{2}\left[\mathrm{M}(\mathrm{CN})_{4}\right]$ was added to an ice cold aqueous solution of $3 \mathrm{mmol}\left[\mathrm{Cu}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. The mixture was stirred in an ice bath for 1 h . The precipitate was filtered, washed with water and dried in vacuo over CaCl_{2}. For $\mathrm{M}=\mathrm{Ni}$, colour: green. Yield: 85%. Dec.: $212^{\circ} \mathrm{C}$. Anal. calc. (\%): $\mathrm{C}, 26.80$; H , 3.37; N, 31.26. Found: C, 26.78; H, 3.28; N, 30.04. For $\mathrm{M}=\mathrm{Zn}$, colour: green. Yield: 85%. Dec.: $163^{\circ} \mathrm{C}$. Anal. calc. (\%): C, 26.31; H, 3.31; N, 30.68. Found: C, 26.86; H, 3.21; N, 30.64.

$(\mathrm{BdH})_{2} \mathrm{Ni}(\mathrm{NC})_{2} \mathbf{Z n}(\mathrm{CN})_{2} \cdot \mathbf{H}_{2} \mathrm{O}$

To an aqueous solution of $3 \mathrm{mmol}_{\mathrm{K}_{2}}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]$, an aqueous solution of 3 mmol $\left[\mathrm{Ni}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ was added. After 1 minute, the bright rose precipitate was filtered, washed with water and dried in vacuo over CaCl_{2}. Colour: rose. Yield: 52%. Dec.: $177^{\circ} \mathrm{C}$. Anal. calc. (\%): C, $30.38 ; \mathrm{H}, 4.67$; N, 35.42. Found: C, $30.48 ; \mathrm{H}, 4.51 ; \mathrm{N}, 35.23$. By the same reaction, but after 1 h of stirring, a yellow precipitate was obtained. When addition of $\mathrm{K}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]$ and $\left[\mathrm{Ni}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ aqueous solutions was made in the opposite order, the same yellow precipitate was formed. It was filtered, washed with water and dried in vacuo over CaCl_{2}. The yellow compound was shown to be the previously described complex, $(\mathrm{BdH})_{2} \mathrm{Zn}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2}$, instead of the expected species $(\mathrm{BdH})_{2} \mathrm{Ni}(\mathrm{NC})_{2} \mathrm{Zn}(\mathrm{CN})_{2}$. Its diamagnetic character and thermal analysis, X-ray powder diffraction pattern and spectroscopic data confirm this assignation.

Physical Measurements

C, H and N were analysed using a Perkin Elmer 240C Elemental Analyzer. Melting points were measured on a Buchi 510 instrument. Infrared spectra were recorded, in the $4000-200 \mathrm{~cm}^{-1}$ region, on a Perkin Elmer 598 spectrophotometer with KBr pellets. Electronic spectra, as diffuse reflectance, were registered on a Schimadzu UV - 265 FW instrument.

Magnetic subsceptibilities were determined with a DSM8 susceptometer, with a Drusch M 1119 power source and an Oxford ITC4 temperature controller. Diamagnetic corrections were applied. ${ }^{11}$ Epr spectra were recorded for the cobalt(II) complex with a spectrometer Bruker ESP 300.

RESULTS AND DISCUSSION

Reactions between $\left[\mathrm{M}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{K}_{2}\left[\mathrm{M}^{\prime}(\mathrm{CN})_{4}\right]$ cause one or two BdH molecules to be released and the dinuclear complexes $(\mathrm{BdH})_{2} \mathrm{M}(\mathrm{NC})_{2} \mathrm{M}^{\prime}(\mathrm{CN})_{2}$, $\left(\mathrm{M}=\mathrm{Co}, \mathrm{Ni}\right.$ or Zn and $\mathrm{M}^{\prime}=\mathrm{Ni} ; \mathrm{M}=\mathrm{Ni}$ and $\left.\mathrm{M}^{\prime}=\mathrm{Zn}\right)$ and $(\mathrm{BdH}) \mathrm{M}(\mathrm{NC})_{2} \mathrm{M}^{\prime}(\mathrm{CN})_{2}$, $\left(\mathrm{M}=\mathrm{Cu}\right.$ or Zn and $\mathrm{M}^{\prime}=\mathrm{Ni} ; \mathrm{M}=\mathrm{Cu}$ and $\mathrm{M}^{\prime}=\mathrm{Zn}$) are formed. In the Ni, Zn complex, yellow $(\mathrm{BdH})_{2} \mathrm{Zn}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2}$ was obtained, regardless of the fact that the initial reactants were $\left[\mathrm{Ni}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{K}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]$ or $\left[\mathrm{Zn}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$. The rose compound $(\mathrm{BdH})_{2} \mathrm{Ni}(\mathrm{NC})_{2} \mathrm{Zn}(\mathrm{CN})_{2}$ was obtained after a short reaction time between $\left[\mathrm{Ni}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{K}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]$. In the solid state the rose compund is stable, but in suspension undergoes the following reaction.

$$
(\mathrm{BdH})_{2} \mathrm{Ni}(\mathrm{NC})_{2} \mathrm{Zn}(\mathrm{CN})_{2} \longrightarrow(\mathrm{BdH})_{2} \mathrm{Zn}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2}
$$

All yellow samples are diamagnetic, X-ray diffaractograms, ir spectra and thermal analysis curves are the same. Because all complexes are insoluble in the usual solvents, it was not possible to carry out solution conductivity measurements, electronic spectra in solution or cyclic voltametry.

Infrared Spectra

Infrared data are summarized in Table I. Biacetyldidydrazone absorptions do not show any significant variation with regard to nitrate complexes. ${ }^{4-5}$ The most characteristic and for cyanide complexes is $v(\mathrm{C} \equiv \mathrm{N}) .{ }^{12-13}$ All complexes show two bands, assigned to $v(\mathrm{C} \equiv \mathrm{N})$, in the $2120-2190 \mathrm{~cm}^{-1}$ range. The higher frequency one is assigned to the bridging group. For complexes with only one coordinated BdH molecule, $(\mathrm{BdH}) \mathrm{Cu}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O},(\mathrm{BdH}) \mathrm{Cu}(\mathrm{NC})_{2} \mathrm{Zn}(\mathrm{CN})_{2}$. $\mathrm{H}_{2} \mathrm{O}$ and $(\mathrm{BdH}) \mathrm{Zn}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{v}(\mathrm{C} \equiv \mathrm{N})$ bridging band shifts to higher values.

Electronic Spectra

Only diffuse reflectance spectra were recorded, because of the low solubility of the complexes. Results are summarized in Table II. The $\mathrm{K}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]$ spectrum shows two charge transfer bands ($\mathrm{M} \rightarrow \mathrm{L}$) in the ultraviolet region, according to a d ${ }^{10}$ configuration with tetrahedral cordination. ${ }^{14}$ The complex spectra show a very broad band in the ultraviolet region, which includes $\mathrm{M} \rightarrow \mathrm{CN}^{-}$charge transfer bands and the $\pi \rightarrow \pi^{*}$ band of biacetyldihydrazone. The $\mathrm{d}-\mathrm{d}$ bands in the complexes are observed at lower energies than those of the nitrates. ${ }^{5}$ The
cyanide ligand coordinated through the nitrogen atom behaves as a medium field ligand, somewhat weaker than biacetyldihydrazone and the Δ value decreases with substitution of a BdH ligand by two N -coordinated CN -groups. The spectrum of the dinickel complex shows $\mathrm{d}-\mathrm{d}$ bands assigned to pseudo-octathedral ${ }^{3} A_{2 g} \rightarrow{ }^{3} T_{2 g}(F)$ and ${ }^{3} A_{2 g} \rightarrow{ }^{3} T_{2 g}(F)$ transitions.

Although the formula $(\mathrm{BdH}) \mathrm{Cu}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ suggest four coordination for copper(II), electronic spectra and the green colour correspond to a pseudooctahedral coordination. In the solid state may have interactions which define hexacoordination. For $(\mathrm{BdH}) \mathrm{Cu}(\mathrm{NC})_{2} \mathrm{Zn}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ similar results were obtained. For $(\mathrm{BdH})_{2} \mathrm{Ni}(\mathrm{NC})_{2} \mathrm{Zn}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, two $\mathrm{d}-\mathrm{d}$ bands, assigned to ${ }^{3} A_{2 g} \rightarrow{ }^{3} T_{2 g}(F)$ and ${ }^{3} A_{2 g} \rightarrow{ }^{3} T_{2 g}(F)$ transitions in an octahedral fields, are observed. N-coordinated CN^{-}behaves as a medium field ligand.

Magnetic Measurements

Magnetic susceptibilities of powdered samples were measured over the temperature range $4.2-290 \mathrm{~K}$. C and θ were calculated from the Curie-Weiss law, $\chi=\mathrm{C} /(\mathrm{T}-\theta)$, by plotting $\chi_{\mathrm{M}}{ }^{-1}$ versus T . Results are summarized in Table II. Magnetic moments were calculated from C values. $(\mathrm{BdH})_{2} \mathrm{Zn}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $(\mathrm{BdH}) \mathrm{Zn}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ are diamagnetic. These results confirm the conservation of square-planar and diamagnetic character of the $(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2}$ group. All other complexes obey the Curie-Weiss law. The cobalt(II) complex, moment does not vary with temperature and corresponds to a high spin state, ${ }^{4}$ T_{1}. E.s.r. spectra show no signal. Results for $\left[\mathrm{Co}(\mathrm{BdH})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Co}(\mathrm{BdH})_{2}\right]\left[\mathrm{Ni}(\mathrm{dto})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ were different. ${ }^{6}$ They showed anomalous magnetic susceptibility versus temperature; this was interpreted on the basis of a spin crossover system with an equilibrium between high spin (quartet, $S=3 / 2$) and low spin (doublet, $S=1 / 2$) states.

For $(\mathrm{BdH})_{2} \mathrm{Co}(\mathrm{NC})_{2} \mathrm{Ni}(\mathrm{CN})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, substitution of a BdH ligand in $\left[\mathrm{Co}(\mathrm{BdH})_{3}\right]^{2+}$ by two CN^{-}groups coordinated through the nitrogen atom causes a crystal field decrease and a shift from the spin crossover situation to a high spin state as the only species in the system. $(\mathrm{BdH})_{2} \mathrm{Ni}(\mathrm{NC})_{2} \mathrm{Zn}(\mathrm{CN})_{2}$ is paramagnetic, with a magnetic moment assignable to a d^{8} configuration in a near octahedral field, determinated by two BdH molecules and two nitrogen atoms of bridging cyanides.

Acknowledgments

This work was supported by the Diputación Foral de Guipúzcoa.
TABLE I Characteristic IR bands for the complexes $\left(\mathrm{cm}^{-1}\right)$

TABLE I (Continued)

[^1]
References

[1] F.L. Lindoy and S.E. Livingstone, Coord. Chem. Rev., 2, 173 (1967).
[2] H.C. Rai and B. Shaoo, J. Indian Chem. Soc., 53, 646 (1976).
[3] S.V. Larionov, L.I. Myachina, L.A. Sheludyakova and E.G. Bognslavskii, Russ. J. Inorg. Chem., 30, 1764 (1985).
[4] M. Barquín and M.J. González Garmendia, Transition Met. Chem., 11, 183 (1986).
[5] M. Barquín and M.J. González Garmendia, Transition Met. Chem., 16, 363 (1991).
[6] M. Barquín and M.J. González Garmendia, Transition Met. Chem., 21, 67(1996).
[7] D.H. Busch and J.C. Bailar Jr., J. Am. Chem. Soc., 78, 1137 (1956).
[8] W.C. Frernelius and J.J. Burbage, Inorg. Synthesis, 2, 227 (1946).
[9] R.G. Dickinson J. Am. Chem. Soc., 44, 774 (1922).
[10] R.C. Stoufer and D.H. Busch, J. Am. Chem. Soc., 78, 6016 (1956).
[11] Ch. .Connor, Progr. Inorg. Chem., 29, 203 (1982).
[12] M.F.A. El-Sayed and R.K. DSAheline, J. Inorg. Nucl. Chem., 6, 187 (1958).
[13] D.A Dows, A. Haim and W.K. Wilmarth, J. Inorg. Nucl. Chem., 21, 33 (1961).
[14] J.R. Perumareddi, A.D. Liehr and A.W. Adamson, J. Am. Chem. Soc., 85, 249 (1963).

[^0]: *Author for correspondence.

[^1]: Here, $\mathrm{sh}=$ shoulder, $\mathrm{br}=$ broad. ${ }^{\mathrm{a}}$ From calculated C values.

